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Abstract - This paper investigates the optimization 
of both single and full polarization radar transmission 
waveforms to maximize target identification discrimina- 
tion. This theory is applied to the discrimination of the 
T-72 and Ml battle tanks based upon simulated target 
frequency response data. Significant performance im- 
provement in identification is obtained using an opti- 
mized transmission waveform over that of a standard 
chirped pulse. 

generated using the Fast Illinois Solver Code Q^ISC) that 
applies a method-of-moments technique to provide high fi- 
delity at relatively low radar frequencies. The specific VHF- 
band data generated by S AIC-Champaign cover frequencies 
between 225-375 MHz at an aspect interval of 2°. 

2   OPTIMIZED   SINGLE-POLARIZATION   TAR- 
GET IDENTIFICATION 

1   INTRODUCTION 

A number of researchers [1, 2, 3, 4, 5, 6, 7] have con- 
sidered the use of sophisticated pulse shaping techniques in 
order to maximize the radar energy reflected off of a non- 
point target. In particular, Grieve, Guerci, Pillai, Oh, and 
Youla, [1, 2, 3] have developed a general theory of opti- 
mized pulse shaping that maximizes the target SINR, in- 
cluding the effects of both generic colored noise and col- 
ored signal-dependent clutter. In addition, Guerci and Pillai 
[8, 9] developed the theory of optimized pulse shaping for 
single-channel target identification discrimination via the 
use of techniques that are similar to that used for detection. 
This paper extends this target discrimination analyses in 
permitting multiple-channels, colored noise, and non-zero 
colored clutter. 

The present analysis applies the theory of optimized 
pulse shaping for target identification discrimination us- 
ing two simulated surface targets: the T-72 and Ml main 
battle tanks. SAIC-Champaign [10] generated the full- 
polarization VHF-band radar signatures for a single eleva- 
tion angle of 15° and the full spectrum 0° - 360° of aspect 
angles relative to the sensor. These VHF-band data were 

The derivation begins with the result that the maximiza- 
tion of the probability of correct classification between two 
target classes a and ß is equivalent [12, 13] to the maxi- 
mization of the square of the Mahalanobis distance 

^2 = (ya-y/3)HR_1(ya-y/3) (i) 

between the two target echoes. Here, yQ = qQf and 
yp = <l/3f are real-valued vectors of length 2JV — 1 giving 
the temporal samples of the echoes from targets a and ß, re- 
spectively. The real-valued vector f = [/o, /i, • • •, /N-I]

T 

gives the temporal samples of the transmission pulse. The 
real-valued matrices qQ and qp are the convolution impulse 
responses for targets a and ß, respectively, having the form 
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The (2JV - 1) x (2iV - 1) Hermitian-Toeplitz matrix 

R: 
/ 

V 

ro n ■     T~2N-2 \ 

r{ TO •     T2N-3 

2N-2 r2N-3     ' •        r'o    / 

(3) 

is the temporal autocorrelation of the noise plus clutter, with 
matrix coefficients 

re = ±J* {G„M + Gc{u>)\F{w)\2}^ dw.     (4) 

Thus, rj2 can be expressed in the form 

r,2 = fHtlf, (5) 

with the matrix ft defined by 

n^itk-qß^-Rr^tk-qß). (6) 

For the case of zero clutter Gc(w) = 0, the minimax theo- 
rem implies that the maximization of rf is obtained when 
the transmission pulse vector f is equal to the eigenvector 
of Cl corresponding to the largest eigenvalue. 

For the case of non-zero clutter Gc(w) ^ 0, the au- 
tocorrelation matrix R depends upon the power spectrum 
\F(UJ)\

2
 of the transmission pulse vector f via Eqs. (3) and 

(4), so that an iterative procedure similar to that used for 
optimized target detection [2] must be applied, as described 
below: 

1) For the initialization k = 0, begin with any real causal 
temporal vector f0 of duration *o and energy Eo. 

2) Let ffc *-* Fk(u) and find the corresponding temporal 
autocorrelation matrix R^ using Eqs. (3) and (4). 

3) Compute the fifc matrix using Eq. (6) in terms of the 
autocorrelation matrix R* and the target impulse re- 
sponse matrix q. 

4) Find the largest eigenvalue A' ' and corresponding 
normalized eigenvector vj ' of the fifc matrix. 

5) Define the error at stage k by 

ek = vV^Cv/^-ffv«), (7) 

and invoke the same update rule that is applied in Pillai 
and Guerci [2] 

ffc4 
ffc + €fcVj' 

(fc) 

1 + \/E? 

(8) 

6) Let ffc+i <-> Fk+i (w) and go back to Step 2 with k 
replaced by k + 1, and repeat until «fc is sufficiently 
small. Then the optimized transmission vector is 

f = lim ffc. 
fc—*oo 

(9) 

Figure 1 gives the improvement in the square of the Ma- 
halanobis distance squared between the T-72 and the Ml at 
VHF-band resulting from the use of the optimized transmis- 
sion pulse over that of a standard chirped pulse. This figure 
shows two values of the CNR: 0 and 10. The improvement 
in the square of the Mahalanobis distance degrades as the 
CNR level is increased,, as occurs with the SINR improve- 
ment in the detection problem [2]. 

For the case of aspect uncertainty, it is necessary to com- 
pute the expected value of the square of the Mahalanobis 
distance, i.e., 

Jf= Ide mv2(0) = [de £(0)fHn(0)f,    (io) 

with the density function £(0) characterizing the a prior 
likelihood of the target aspect 0. The matrix Sl(6) now in- 
cludes aspect dependence, i.e., 

u(e) = (wa(0) -W/3(0))
H
R-

1
(WQ(ö) -wß(e)). (ID 

Inserting Eq. (11) into Eq. (10) implies that 

7? = iHm. (12) 

can be expressed in terms of 

0= f dß#ß){Hß). (13) 

Thus, optimization of the transmission waveform to maxi- 
mize identification performance under conditions of aspect 
uncertainty involves the computation of the weighted aver- 
age of €l{6) matrices with respect to aspect. Furthermore, 
the iterative procedure described above for the case of non- 
zero clutter is modified only byjhe replacement of the Q 
matrix by its weighted average ft. 

3    OPTIMIZED FULL-POLARIZATION TARGET 
IDENTIFICATION 

This section describes the theory of optimal waveform 
transmission and reception in order to maximize the Ma- 
halanobis distance between two target echoes for the case 
of a single full-polarization waveform, i.e., one contain- 
ing both horizontal and vertical components. Consider the 
2AMength real-valued transmission signal vector and cor- 
responding frequency response vector 

._ (h 
= (Fh (14) 
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with ffe, f„, Fh and F„ each containing N temporal sam- 
ples. The subscripts h and v denote the horizontal and ver- 
tical channels, respectively. This transmit vector is further 
constrained to have finite energy Eo- This energy constraint 
corresponds to the case in which the sum of the transmis- 
sion energies in both the horizontal and vertical channels 
are fixed, so that a single power supply supports both trans- 
mission channels. The 27V x 27V target impulse response 
matrix and corresponding frequency response matrix have 
the form 

(<ihh    <ihv 

) \Qvh   QwJ \<lvh.     Qvv J """       \Qvh 

The target echo vector has the form 

(:) 
qf. 

(15) 

(16) 

The full-polarization matrix 

/   r0 
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ro 
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(17) 

TO / 

is the temporal autocorrelation of the noise plus clutter, with 
the 2 x 2 sub-matrix coefficients 

re = ±J* {G„H + Gf(u)}e^ du. (18) 

The matrices Gn(o;) and G/(«) are the full-polarization 
spectral densities corresponding to the noise and the clutter, 
respectively. The total clutter power spectral density has the 
form 

GF(u) s    Ghh(u)\Fh(u)\2 + Ghv(u>)Fh(u,)F:(u) (19) 
+    Grh(w)2?,(w)J;k(«)G„(w)|F,,(w)|2 > 0 (20) 

The optimization of the transmission vector f in order to 
maximize the square of the full-polarization Mahalanobis 
distance gives 

7?2=maxfHfif. (21) 

with the matrix ft defined by 

ft = {qQ - q^tfR-1^ - q^}. (22) 

For the case of zero clutter Gc(w) = 0, the minimax the- 
orem implies that the maximization of TJ

2
 is obtained when 

the transmission pulse vector f is equal to the eigenvector 
of ft corresponding to the largest eigenvalue. For the case 
of non-zero clutter Ge(w) # 0, the autocorrelation matrix 
R depends upon the full-polarization power spectrum of the 
transmission pulse vector f via Eq. (20), so that the iterative 

procedure described for single-polarization above must be 
applied. 

Figure 2 gives the full-polarization waveforms optimized 
to maximize the Mahalanobis distance between the T-72 
and the M1, as a function of the relative aspect angle for the 
case of white noise and zero clutter. The optimized wave- 
form typically focuses the majority of its energy into a nar- 
row frequency band corresponding to the maximum target 
response at that aspect angle. Figure 3 demonstrates that 
the optimized full-polarization waveform gives an improve- 
ment of 1-5 dB in the Mahalanobis distance over that ob- 
tained from the transmission of a full-polarization chirped 
waveform. 

The analysis described above for the case of aspect cer- 
tainty can be extended to the case of aspect uncertainty in a 
manner similar to that performed for the single-polarization 
case. The resulting theory requires a weighted-average with 
respect to relative aspect angle be performed on the auto- 
correlation kernel matrix ft. This averaging of the full- 
polarization kernel matrices yields a smoothing of the Ma- 
halanobis curves, as was obtained in the single-polarization 
case. 

4 CONCLUSION 

This study investigates the optimization of a single trans- 
mission pulse shape and the receiver impulse response in 
order to maximize the probability of correct identification 
between two target classes. The optimization of the trans- 
mission pulse shaping in order to maximize target identifi- 
cation performance that was developed by Guerci and Pillai 
[9] is extended to include multiple channels, colored noise, 
and non-zero colored clutter. These extensions [11] for the 
identification problem are developed via a maximization of 
the Mahalanobis distance, and thus the probability of cor- 
rect classification, between the echoes of two target classes. 

This study applies this theory [9] and extensions of op- 
timized transmission pulse shaping in order to investigate 
the maximization of the probability of correct identifica- 
tion. Algorithmic implementation for the simulated T-72 
and Ml frequency response data at both single and multiple 
polarizations of the VHF frequency band reveals significant 
improvements in the Mahalanobis distance of using a single 
optimized waveform over that of a standard chirped pulse. 
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Figure 2. This figure gives the full-polarization wave- 
forms optimized to maximize the Mahalanobis dis- 
tance between the T-72 and the Ml, as a function of 
the relative aspect angle for the case of white noise 
and zero clutter. The optimized waveform typically 
focuses the majority of its energy into a narrow fre- 
quency band corresponding to the maximum target 
response at that aspect angle. 

Mahalanobis Distance Comparison: T72 - M1,o = 0, CNR - 0 

180 
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Figure 3. This figure demonstrates that the optimized 
full-polarization waveform gives an improvement of 1- 
5 dB in the Mahalanobis distance over that obtained 
from the transmission of a full-polarization chirped 
waveform. 
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